Wednesday, August 5, 2015

Circuit Schematic Power Bank Charger using LM317 IC

Eltronicschool. - Here is circuit schematic for power bank charger based on LM317 IC like in figure 1 below. LM317 IC is popular linear voltage regulator that was invented by Robert C. Dobkin and Robert J. Widlar in 1970 from National Semiconductor. 

Circuit Schematic

Figure 1. Circuit Schematic Power Bank Charger using LM317 IC
(Source: Kit FM Tasikmalaya)

Component Part
  1. LM317 IC
  2. LED
  3. Capacitors
  4. Resistors

Description

Circuit schematic like in figure 1 above is Circuit Schematic Power Bank Charger using LM317 IC. Base in this circuit is LM317 IC as positive voltage regulator with 1.5 A adjustable output. 

And here are some information about LM317 IC like the specification, operation, voltage and current regulator.

Specification


Operation

As linear regulators, the LM317 and LM337 are used in DC to DC converter applications. Linear regulators inherently draw as much current as they supply. When this current is multiplied by the voltage difference between input and output, a significant amount of heat results. Therefore the use of an LM317 commonly also requires a heat sink. For large voltage differences, the energy lost as heat can ultimately be greater than that provided by the circuit. This is the trade-off for using linear regulators which are a simple way to provide a stable voltage with few additional components. The alternative is to use a switching voltage regulator which is usually more efficient but has a larger footprint and requires a larger number of associated components.

In packages with a heat-dissipating mounting tab, such as TO-220, the tab is connected internally to the output pin which may make it necessary to electrically isolate the tab or the heat sink from other parts of the application circuit. Failure to do this may cause the circuit to short.

Voltage Regulator

The LM317 has three pins: INput, OUTput, and ADJustment. The device is conceptually an op amp with a relatively high output current capacity. The inverting input of the amp is the adjustment pin, while the non-inverting input is set by an internal bandgap voltage reference which produces a stable reference voltage of 1.25 V.

A resistive voltage divider between the output and ground configures the op amp as a non-inverting amplifier so that the voltage of the output pin is continuously adjusted to be a fixed amount, the reference voltage, above that of the adjustment pin. Ideally, this makes the output voltage:

Vout = Vref (1 + RL/RH)

Because some quiescent current flows from the adjustment pin of the device, an error term is added:

Vout = Vref (1 + RL/RH) + IQRL

To make the output more stable, the device is designed to keep the quiescent current at or below 100µA, making it possible to ignore the error term in nearly all practical cases.

Current Regulator

The device can be configured to regulate the current to a load, rather than the voltage, by replacing the low-side resistor of the divider with the load itself. The output current is that resulting from dropping the reference voltage across the resistor. Ideally, this is:

Iout = Vref/RH

Accounting for quiescent current, this becomes:

Iout = (Vref/RH) + IQ

LM317 can also be used to design various other circuits like 0 V to 30 V regulator circuit, adjustable regulator circuit with improved ripple rejection, precision current limiter circuit, tracking pre-regulator circuit, 1.25 V to 20 V regulator circuit with minimum program current, adjustable multiple on-card regulators with single control, battery charger circuit, 50 mA constant current battery charger circuit, slow turn-on 15 V regulator circuit, ac voltage regulator circuit, current-limited 6 V charger circuit, adjustable 4 V regulator circuit, high-current adjustable regulator circuit and many more.


Thank you for your coming here in www.eltronicschool.com site, we hope the article above will help you to know more about your an electronic circuit design and software in this time, etc. Please comment here when you want to share and other. Thank you.

0 comments:

Post a Comment

Thank's for your reading in this article, please don't forget to comment.